
VisSheet Redux: Redesigning a Visualization Exploration Spreadsheet
for the Web

T.J. Jankun-Kelly and Kwan-Liu Ma
University of California, Davis

{kelly,ma }@cs.ucdavis.edu

Introduction

The exploration of complex data sets requires interfaces to present
and navigate through the visualization of the data. In recent work
[Jankun-Kelly and Ma 2001], we produced a visualization explo-
ration spreadsheet to address this issue. The developed application,
however, was implemented for off-line use only. For data sets on
remote sites, this approach is not appropriate. Thus, a web-based
version of the visualization exploration spreadsheet is needed. This
abstract discusses the process of transforming the interface from an
off-line to an on-line design.

From Off-line to On-line

Our spreadsheet-like interface (VisSheet, for short) was designed
to assist visualization exploration by providing context for where
the user is in their exploration, where they have been, and suggest-
ing where they may go next. The VisSheet addresses these tasks by
providing a movable, scalable window into the visualization param-
eter space. By manipulating the visualization parameters, the user
changes the position and size of this window. Only two visualiza-
tion parameters are displayed at a time: one along the rows and an-
other along the columns. For the non-displayed parameters, a set of
default values is maintained which may be updated at run-time. Pa-
rameter values are rendered as glyphs. Cells—representing a com-
bination of the row, column, and default parameter values—display
the visualization results. By changing the the default values for
non-displayed parameters or which parameters are displayed along
the rows or columns, the “window” can be moved in the visualiza-
tion space. Thus, the data exploration process becomes the process
of manipulating the spreadsheet window through the visualization
space.

The original design of the VisSheet consisted of three major
components: the active View on the visualization parameter space,
the Model of the visualization transform responsible for the param-
eter space, and a Session which records the user’s process. These
components were all designed to be modular. For example, one
could change the type of visualization performed by replacing the
visualization transform encapsulated by the Model object. This
module handles the rendering requests. By replacing the Model
object with a version that performed remote visualization, the ap-
plication could become partially on-line. This configuration, how-
ever, was fully “web-aware”: it could neither be accessed on-line
nor visualize data from different servers. Thus, a redesign was per-
formed.

There were two major goals for the redesign effort. The first
was to allow the VisSheet to be “fully” on-line. By this, we mean
that the application should be accessible over the Internet on a wide
variety of machines. The second goal was to maintain modular-
ity. The VisSheet is only one of the exploration interfaces being
developed. It is important that the reusable components common to
the other interfaces—such as the modules capturing the exploration
process—could be reused. The modularity also extends to the visu-
alization itself: Like the original VisSheet, the new version must be
able to interface with different visualization transforms.

The first goal determined a series of constraints on the new de-
sign. Since the application was to be on the web, it was assumed
that there would be no interaction with the local machine. In addi-
tion, it is desirable that users of the on-line VisSheet have a very low
barrier of entry. Fewer constraints were due to the second goal. At
the time of the VisSheet redesign, the modules forming the core of
the new visualization exploration framework were also be written.
Thus there was no legacy code to support in the new implementa-
tion.

The final design of the system consists of rewrites of the orig-
inal three major systems. The visualization framework itself has
been implemented in Python. In the new framework, an abstract,
UI-toolkit independent VisSheet module has been developed; for
the web VisSheet, a Java interface is provided by using Jython, a
Python environment for Java. In our prototype, the VisSheet ap-
plet, written in Java and Jython, communicates to a volume visual-
ization server written in Python with a C++ hardware accelerated
renderer. This interoperation of languages attests to the modular-
ity of the system. This system will be demonstrated, detailing both
how the framework assists remote visualization and how the system
evolved to this point.

Oliver Kreylos provided the texture-based volume renderer for our
use.

References

JANKUN -KELLY, T. J., AND MA , K.-L. 2001. Visualization
exploration and encapsulation via a spreadsheet-like interface.
IEEE Transactions on Visualization and Computer Graphics 7,
3 (July/Sept.), 275–287.

329


